超碰97人人爱人人做-超碰97人人操-超碰97人人操人人干-超碰97人人操人人摸-超碰97人人艹-超碰97人人干人人爱

News
Company News
Media Reports
Published Paper

Published Paper

  • 2024

    Xue N., Hong D., Zhang D., et al. Engineering IscB to develop highly efficient miniature editing tools in mammalian cells and embryos. Molecular Cell (2024).

  • 2024

    Wang X., Wu X., Tan B., et al. Allogeneic CD19-targeted CAR-T therapy in severe myositis and systemic sclerosis achieved durable remission and reversed extensive fibrotic damages. Cell (2024).

  • 2024

    Yang L., Huo Y., Wang M., et al. Engineering APOBEC3A deaminase for highly accurate and efficient base editing. Nature Chemical Biology (2024).

  • 2023

    Zhang, N., Liu, X., Qin, J., et al. LIGHT/TNFSF14 promotes CAR-T cell trafficking and cytotoxicity through reversing immunosuppressive tumor microenvironment. Molecular Therapy (2023).

  • 2023

    Chen, L., Hong, M., Luan, C., et al. Adenine transversion editors enable precise, efficient A·T-to-C?G base editing in mammalian cells and embryos. Nature Biotechnology (2023).

  • 2022

    Chen, L., Zhu, B., Ru, G., et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology (2022).

  • 2022

    Chen, L., Zhang, S., Xue, N., et al. Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology (2022).

  • 2022

    Zhang, J., Hu, Y., Yang, J., et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature (2022).

    Recently, chimeric antigen receptor (CAR)-T cell therapy has shown great promise in treating haematological malignancies1–7 . However, CAR-T cell therapy currently has several limitations8–12. Here we successfully developed a two-in-one approach to generate non-viral, gene-specifc targeted CAR-T cells through CRISPR–Cas9. Using the optimized protocol, we demonstrated feasibility in a preclinical study by inserting an anti-CD19 CAR cassette into the AAVS1 safe-harbour locus. Furthermore, an innovative type of anti-CD19 CAR-T cell with PD1 integration was developed and showed superior ability to eradicate tumour cells in xenograft models. In adoptive therapy for relapsed/refractory aggressive B cell non-Hodgkin lymphoma (ClinicalTrials.gov, NCT04213469), we observed a high rate (87.5%) of complete remission and durable responses without serious adverse events in eight patients. Notably, these enhanced CAR-T cells were efective even at a low infusion dose and with a low percentage of CAR+ cells. Single-cell analysis showed that the electroporation method resulted in a high percentage of memory T cells in infusion products, and PD1 interference enhanced anti-tumour immune functions, further validating the advantages of non-viral, PD1-integrated CAR-T cells. Collectively, our results demonstrate the high safety and efcacy of non-viral, gene-specifc integrated CAR-T cells, thus providing an innovative technology for CAR-T cell therapy.
  • 2022

    Fu, B., Liao, J., Chen, S. et al. CRISPR–Cas9-mediated gene editing of the BCL11A enhancer for pediatric β0/β0 transfusion-dependent β-thalassemia. Nature Medicine (2022).

    Gene editing to disrupt the GATA1-binding site at the +58 BCL11A erythroid enhancer could induce γ-globin expression, which is a promising therapeutic strategy to alleviate β-hemoglobinopathy caused by HBB gene mutation. In the present study, we report the preliminary results of an ongoing phase 1/2 trial (NCT04211480) evaluating safety and efficacy of gene editing therapy in children with blood transfusion-dependent β-thalassemia (TDT). We transplanted BCL11A enhancer-edited, autologous, hematopoietic stem and progenitor cells into two children, one carrying the β0/β0 genotype, classified as the most severe type of TDT. Primary endpoints included engraftment, overall survival and incidence of adverse events (AEs). Both patients were clinically well with multilineage engraftment, and all AEs to date were considered unrelated to gene editing and resolved after treatment. Secondary endpoints included achieving transfusion independence, editing rate in bone marrow cells and change in hemoglobin (Hb) concentration. Both patients achieved transfusion independence for >18?months after treatment, and their Hb increased from 8.2 and 10.8?g?dl?1 at screening to 15.0 and 14.0?g?dl?1 at the last visit, respectively, with 85.46% and 89.48% editing persistence in bone marrow cells. Exploratory analysis of single-cell transcriptome and indel patterns in edited peripheral blood mononuclear cells showed no notable side effects of the therapy.
  • 2020

    Zhang, X., Zhu, B., Chen, L.?et al.?Dual base editor catalyzes both cytosine and adenine base conversions in human cells.?Nature Biotechnology (2020).

    Although base editors are useful tools for precise genome editing, current base editors can only convert either adenines or cytosines. We developed a dual adenine and cytosine base editor (A&C-BEmax) by fusing both deaminases with a Cas9 nickase to achieve C-to-T and A-to-G conversions at the same target site. Compared to single base editors, A&C-BEmax’s activity on adenines is slightly reduced, whereas activity on cytosines is higher and RNA off-target activity is substan- tially decreased.
  • 2020

    Zhang X., Chen L., Zhu B., et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology (2020).

    Cytidine base editors are powerful genetic tools that catalyse cytidine to thymidine conversion at specific genomic loci, and further improvement of the editing range and efficiency is critical for their broader applications. Through insertion of a non-sequence-specific single-stranded DNA-binding domain from Rad51 protein between Cas9 nickase and the deaminases, serial hyper cytidine base editors were generated with substantially increased activity and an expanded editing window towards the protospacer adjacent motif in both cell lines and mouse embryos. Additionally, hyeA3A-BE4max selectively cata- lysed cytidine conversion in TC motifs with a broader editing range and much higher activity (up to 257-fold) compared with eA3A-BE4max. Moreover, hyeA3A-BE4max specifically generated a C-to-T conversion without inducing bystander mutations in the haemoglobin gamma gene promoter to mimic a naturally occurring genetic variant for amelioration of β-haemoglobinopathy, suggesting the therapeutic potential of the improved base editors.
  • 2020

    Zeng J, Wu Y, Ren C, Bauer DE, et al. Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020.

    Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to permanently remedy blood disorders, although its application in engrafting hematopoietic stem cells (HSCs) remains unexplored. Here we purified A3A (N57Q)-BE3 protein for ribonucleoprotein (RNP) electroporation of human peripheral blood (PB) mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs). We observed frequent on-target cytosine base
Back to top
主站蜘蛛池模板: 国产一区二区在线免费观看 | 欧美在线播放成人a | 国产精品日韩欧美一区二区 | 日本高清视频www夜色资源网 | 国产精品人成视频免费播放 | 国产精品一区二区不卡的视频 | 日韩a毛看片免费观看视频 电影天堂 | 日韩高清免费视频观看 | 精品亚洲一区二区三区在线播放 | 每日更新亚洲成a人v | 成人一区视频 | 日韩在线一区二区三区免费视频 | 国产在线视频奶水 | 国产一级a一级a爰片免费无 | 大胸视频在线观看国产 | 国产精品免费在线观看 | 国产精品三级在线看免费看 | 欧美在线日韩精品 | 在线观看中文字幕码 | 国产精品亚洲产品一区二区三区 | 亚联创展包装(清远)有限公司 | 青青国产在观免费影视 | 美国产日产一区∨ | 一区二区中文字幕在线 | 国产不卡视频一区二区三区 | 欧美亚洲一区二区三区导航 | 亚洲国产不卡一区二区三区 | 999精产| 日本三级在线播放线观看视频 | 精品人伦一区二区三区蜜桃 | 亚洲卡通欧美制服中文 | 日韩v手机在线免费观看亚洲 | 51精品国产人成在线观看 | 9丨精品国产高清自在线看 国产高清盗摄系列在线 | 天天影视| 91导航在线国产无弹窗 | 日韩日皮在线一区二区 | 国产精品va欧美精品 | 蜜桃网站入 | 秋霞日韩欧美一区二区三区 | 日产精品一区二区三区免费 |